10bet十博官网登录

西安光机所芯片集成微腔光学频率梳研究获进展

作者:仪器仪表    来源:未知    发布时间:2020-04-30 11:31    浏览量:

自本世纪初飞秒光学频率梳(光频梳)问世并获得2005年诺贝尔物理学奖以来,其发展不仅日新月异,而且应用也层出不穷,从光频标、精密光谱学、阿秒科学、基本物理常数等基础研究拓展到了绝对距离测量、地外行星探测、微波光子学等高技术领域,特别是近年来在空间高精度频标、空地高精度时频传递等重大需求中也呈现出越来越广泛而重要的应用潜力。在光频梳研究中,一个重要的问题是对载波包络相移频率fceo的精确锁定,其不仅决定着整个频率梳的初始频率漂移,而且在飞秒激光与物质相互作用研究中也影响着所能得到的作用效果与物理效应,因此如何精密控制并锁定fceo以获得极低相噪的结果,是光频梳与超快激光研究中极具挑战性的工作之一,也是光频梳所能达到水平的重要标志。  中国科学院物理研究所/北京凝聚态物理国家研究中心光物理实验室L07组多年来一直致力于低相噪高稳定光学频率梳技术及频率锁定的研究,曾提出整形光谱自差频测量fceo的技术,证明了一种获得高信噪比fceo的方案,并结合电子锁相环反馈控制技术实现了相位漂移低至55mrad的超低相噪钛宝石光频梳。近年来,一种新的fceo反馈技术——前置反馈锁定技术,由于可直接补偿抵消fceo漂移,因此受到人们的广泛关注。所谓前置反馈锁定技术,是在输出激光中插入一个声光调制移频器(Acousto-optic Frequency Shifter, AOFS),通过将测到的fceo频率直接调制到声光晶体上,从而在其一级衍射光中得到频率被量身修正的输出激光。相比传统的电子锁相环反馈技术,前置反馈锁定没有比例积分滤波(PID)环节,相当于具有很宽的带宽,因此可以瞬时响应误差信号,从而很好地抑制高频相噪,理论上具有极低的噪声。最重要的一点,AOFS是直接插入在输出激光中,对激光器系统没有任何影响,这就大大增加了该技术的实用性。最近,该组的副研究员韩海年、博士研究生张子越和研究员魏志义等人在多年努力的基础上,首次实现了全固态克尔透镜锁模Yb:CYA激光fceo的前置反馈锁定,从而实现了一种超低相噪的全固态新型光学频率梳。图1所示为实验装置及结果,实验中他们研制的全固态克尔透镜锁模Yb:CYA激光的输出功率为200mW、脉宽为57fs、重复频率为84MHz,通过在AOFS的零级和一级衍射光后各搭建一套f-2f干涉装置作为内环和外环,并将内环测到的fceo信号直接反馈到AOFS以控制fceo的漂移、外环测到的fceo信号用于分析锁定结果。得益于AOFS前置反馈锁定控制带宽的大幅度提升,最后测得该光频梳的fceo积分相位噪声(1Hz-1MHz)低达79.3mrad,相对采用传统锁相环泵浦反馈方式的316mrad结果,相位噪声降低了70%,这也是迄今基于全固态激光在1um波段得到的最低fceo相噪。此外通过对1Hz以下相位噪声功率谱密度和长时间频率不稳定度的分析,表明他们发展的该项技术在高频相噪抑制方面更具优势。该项工作结果以Ultra-low-noise carrier-envelope phase stabilization of a Kerr-lens mode-locked Yb:CYA laser frequency comb with a feed-forward method 为题目发表在最新一期的《光学快报》上(Optics Letters Vol.44(22),2019)。  如何实现光频梳和连续激光之间的相干连接,是光频梳和光频测量比对研究中另一个具有重要意义和挑战性的研究内容。将锁定到超稳激光的光频梳再与任何一个连续激光相干连接,超稳激光的频率稳定度可准确地传递到这个连续激光,这样就成为一个完美的光学频率综合器,可在微波至光频波段提供任意的低相噪高稳定频率源。AOFS前置反馈锁定技术同样可以用于连续激光和光频梳之间的相干连接,基于该项专利发明(专利号:ZL 201811074118.3),韩海年、博士研究生邵晓东和研究员魏志义等人也进一步实现了频率稳定性的相干传递。实验中首先将一台1064 nm连续激光器和光频梳进行拍频,然后将得到的拍频信号与本振信号混频后驱动AOFS以实现前置反馈,这样经过AOFS后的一级衍射光就被锁定到了光频梳上(图2左),这台光频梳是锁定在一台超稳972nm连续光源上。锁定前,1064nm连续激光器每小时的频率漂移约几十kHz,锁定后测量得到10000 s积分时间下一级衍射光的频率漂移偏差仅为4.1 mHz,对应的频率稳定性为1.5×10-17/s(图2右),噪声被极大压制,长期稳定性也得到了极大提高,很好地实现了光频梳和连续激光之间的相干连接。主要结果最近以Precision locking CW laser to ultrastable optical frequency comb by feed-forward method 为题目发表在AIP Advances 9(11)2019上。  以上研究获得中科院先导专项(XDA1502040404, XDB21010400)及国家自然科学基金项目 (91850209, 11434016, 61575219)的支持。

近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员毛庆和课题组发展了一种新型双倍周期锁模光学频率梳技术,通过研究PD-ML的反馈机制及内在关联特性,实现了重频可大范围切换的光纤激光频率梳,该项工作发表在光学期刊Optics Express(2018,26,577-585)上。

精密计量是现代科学技术发展的重要基础,高精度的时间频率标准不仅是物理学的前沿研究内容之一,也是目前最精确的计量单位。光学频率梳作为链接微波频率标准与光学频率标准的核心技术,自1999年发明以来,极大地推动了精密计量科学的革命性进展。作为“超快”与“超稳”特性的结合,飞秒光学频率梳融“超宽的光谱”与“超稳的光频”于一身,经历近二十年的发展,已从需要在特殊实验室精心呵护的“婴儿”,成长为可在众多领域尽显身手的“超人”,为光学原子钟、时频计量、空间远距离精密测距、地外天体探测、超分辨光谱学、阿秒脉冲产生等前沿方向的开拓与研究提供了强有力的工具。随着目前光钟的稳定度达到10-18量级,作为计时和传递比对的光梳稳定度也同样要求优于10-18,并且相噪线宽小于1Hz,因此发展高稳定度的光梳,是实现高精度光钟的重要保证。掺镱光纤激光器由于具有效率高、光谱宽、结构紧凑、运行稳定等优良特性,近年来已成为飞秒光梳研究及产品化的主流方案之一。

近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室微纳光学与光子集成课题组在中国科学院战略性先导科技专项“大规模光子集成芯片”和国家自然科学基金项目的支持下,芯片集成微腔光学频率梳研究取得进展,特邀论文Raman self-frequency shift of soliton crystal in a high index doped silica micro-ring resonator 发表在Optical Materials Express上,并获美国光学学会“光学聚焦”(Spotlight on Optics)亮点推荐。

光纤激光频率梳具有结构简单、成本低、操作方便等优点,应用广泛。在诸如精密激光光谱和微波光子学等应用领域,梳齿间距是一个非常重要的参数。光纤激光频率梳的梳齿间距主要由模锁脉冲重复频率决定,而重复频率依赖于腔长,若需对梳齿间距进行较大调整,则需重新设计激光器腔长,这给实际应用带来了极大困难。

由于光梳融合了超快激光及时频计量两个领域的共同前沿内容,中国科学院物理研究所计量测试高技术联合实验室早在2001年就开展了光梳的研究,在中科院及基金委、科技部有关项目的支持下,他们以自己研制的飞秒钛宝石激光为基础,先后研制成功基于f-2f结构及0-f结构的光梳,其中后者通过技术上的创新,得到了主要指标优于其他光梳公开报道的结果。最近该联合实验室暨L07组通过进一步将掺镱飞秒光纤光梳的重复频率frep及载波包络相移频率fceo分别锁定到超稳激光参考源,测得了秒稳为2×10-18/s的频率稳定性结果,相比锁定至射频源的传统方案,频率稳定度提高了5~6个数量级。

基于芯片集成微谐振腔(microresonators)的光学频率梳由于其小型化、超高重复频率等特点,有望在精密光谱测量、绝对测距、天文观测、小型化光钟、超高速光通信等领域获得重要应用。美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的Daniel C. Cole撰文评论称“揭示光学微型谐振腔中复杂的非线性动力学过程是推动具备革命性的频率计量与合成能力的光学频率梳技术向芯片化发展的重要步骤,而论文的结果使得人们更加接近该目标的实现。该论文同时研究了两种不同的非线性效应:由拉曼散射引起的孤子脉冲拉曼自频移和腔内共同传输且自发有序排列的脉冲串——光孤子晶体(soliton crystals)。其重要意义在于:一方面,文章展示了孤子晶体的特征光谱可以用来研究光学材料的拉曼响应,为类似系统中非线性动力学研究提供了新的工具;另一方面,文章中高折射率差掺杂玻璃材料的拉曼响应测量对更深刻理解如何开发基于这种材料平台的微光梳(Micro-comb),判断材料本身潜力与极限,进而推进其实际应用至关重要。总之,论文结果使人们更接近于完全开发非线性光学集成微腔在诸多应用领域的巨大潜力”。

更多新闻推荐

Copyright © 2015-2019 http://www.dl-jdg.com. 10bet十博官网登录有限公司 版权所有